Integrin-linked kinase expression is elevated in human cardiac hypertrophy and induces hypertrophy in transgenic mice.
نویسندگان
چکیده
BACKGROUND Although numerous signaling pathways are known to be activated in experimental cardiac hypertrophy, the molecular basis of the hypertrophic response inherent in human heart diseases remains largely unknown. Integrin-linked kinase (ILK) is a multifunctional protein kinase that physically links beta-integrins with the actin cytoskeleton, suggesting a potential mechanoreceptor role. METHODS AND RESULTS Here, we show a marked increase in ILK protein levels in hypertrophic ventricles of patients with congenital and acquired outflow tract obstruction. This increase in ILK was associated with activation of the Rho family guanine triphosphatases, Rac1 and Cdc42, and known hypertrophic signaling kinases, including extracellular signal-related kinases (ERK1/2) and p70 S6 kinase. Transgenic mice with cardiac-specific expression of a constitutively active ILK (ILK(S343D)) or wild-type ILK (ILK(WT)) exhibited a compensated ventricular hypertrophic phenotype and displayed an activation profile of guanine triphosphatases and downstream protein kinases concordant with that seen in human hypertrophy. In contrast, transgenic mice with cardiomyocyte-restricted expression of a kinase-inactive ILK (ILK(R211A)) were unable to mount a compensatory hypertrophic response to angiotensin II in vivo. CONCLUSIONS Taken together, these results identify ILK-regulated signaling as a broadly adaptive hypertrophic response mechanism relevant to a wide range of clinical heart disease.
منابع مشابه
Casein kinase-2α1 induces hypertrophic response by phosphorylation of histone deacetylase 2 S394 and its activation in the heart.
BACKGROUND Cardiac hypertrophy is characterized by transcriptional reprogramming of fetal gene expression, and histone deacetylases (HDACs) are tightly linked to the regulation of those genes. We previously demonstrated that activation of HDAC2, 1 of the class I HDACs, mediates hypertrophy. Here, we show that casein kinase-2α1 (CK2α1)-dependent phosphorylation of HDAC2 S394 is required for the ...
متن کاملMolecular Cardiology Casein Kinase-2 1 Induces Hypertrophic Response by Phosphorylation of Histone Deacetylase 2 S394 and its Activation in the Heart
Background—Cardiac hypertrophy is characterized by transcriptional reprogramming of fetal gene expression, and histone deacetylases (HDACs) are tightly linked to the regulation of those genes. We previously demonstrated that activation of HDAC2, 1 of the class I HDACs, mediates hypertrophy. Here, we show that casein kinase-2␣1 (CK2␣1)– dependent phosphorylation of HDAC2 S394 is required for the...
متن کاملRole of oxidative stress in the aortic constriction-induced ventricular hypertrophy in rat
Introduction:Severe abdominal aortic constriction above the renal arteries induces arterial hypertension above the stenotic site that is the cause of cardiac hypertrophy. Previous studies have shown that high blood pressure induces myocardial oxidative stress with conflicting results. In the present study, we assessed the effects of acute hypertension on the myocardial oxidative stress an...
متن کاملIntegrin Linked Kinase (X-ILK) Function during Embryonic Development and within Adult Tissues of Xenopus laevis
Integrin linked kinase (ILK) is a serine/threonine protein kinase implicated in the phosphatidylinositol 3’kinase (PI3’K) pathway. Integrin linked kinase has been investigated in different organisms such as mammalian systems (human, mice, rat), insects (Drosophila) and nematodes (Cenorhabditis elegans), however to date little data regarding ILK research on amphibians has been reported. In...
متن کاملType III Transforming Growth Factor-β Receptor Drives Cardiac Hypertrophy Through β-Arrestin2-Dependent Activation of Calmodulin-Dependent Protein Kinase II.
The role of type III transforming growth factor-β receptor (TβRIII) in the pathogenesis of heart diseases remains largely unclear. Here, we investigated the functional role and molecular mechanisms of TβRIII in the development of myocardial hypertrophy. Western blot and quantitative real time-polymerase chain reaction analyses revealed that the expression of TβRIII was significantly elevated in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 114 21 شماره
صفحات -
تاریخ انتشار 2006